
32 KONICA MINOLTA TECHNOLOGY REPORT VOL. 16 (2019)

＊Invicro, A Konica Minolta Company

1   Introduction

Volumetric measurements derived from non-invasive 
medical imaging data provide valuable biomarkers for 
drug discovery and development. While human observ-
ers can segment regions-of-interest from an individual 
scan using manual approaches, this process is slow and 
prone to inter- and intra-observer variability. Given the 
size of many clinical and preclinical studies, semi-auto-
mated segmentation approaches are necessary to match 
research timelines and minimize costs. Additionally, one 
of the largest challenges facing machine-learning and 
artificial intelligence tasks is the ability to efficiently 
and accurately generate labels (identify anatomical 
structures) for pre-existing and new data. Tools that are 
capable of such labeling in 2D and 3D data sets across 
a variety of anatomical structures and imaging modal-
ities are indispensable for the downstream generation 
of features utilized in machine learning pipelines.

A MAS tool is presented to accurately and repro-
ducibly segment image data. MAS methods utilize 
image registration techniques to map a population of 
reference subjects and their associated subject-spe-
cific region segmentations to a test subject. The tool 
leverages linear and non-linear registrations of a ref-
erence library of gold-standard segmentations to a test 
dataset, building a probabilistic atlas that is mapped 
to a determined region of interest (ROI) [1,2].

2   Methods

The following describes the steps utilized to imple-
ment a MAS routine. The majority of the described 
steps are general to the MAS technique while certain 
deployment details are specific to Invicro’s imple-
mentation. The Invicro MAS routine has been devel-
oped, evaluated and applied in a uniquely diverse 
collection of data that spans imaging modalities, spe-
cies, organ systems and resolution levels.
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2. 1   Generation of reference library
Reference images, i.e. labeled training images, 

form the foundation of MAS algorithms [3]. They are 
obtained by selecting a sample data set from a repre-
sentative study population, usually a few tens of data 
sets. To construct the reference library from this sam-
ple data set, training images are manually segmented 
by a domain-specific expert who relies on an interac-
tive visualization software. Invicro’s implementation 
uses Invicro’s VivoQuantTM for manual labeling as it 
has been developed with a variety of 2D and 3D region 
generation tools to aid this task. Representative data 
and gold standard segmentations are stored in an 
accessible data storage repository to enable down-
stream processing. Invicro’s iPACS® data management 
tool is used internally for this task as it is capable of 
supporting multiple data formats and is directly 
linked to the VivoQuant, enabling ease of data and 
region access as well as segmentation execution.

2. 2   Registration
Generally, MAS routines utilize a sequence of image 

registration steps to map reference library data and 
segmentations to a test data set. Invicro’s MAS imple-
mentation utilizes a series of linear and nonlinear 
geometric transformations to map a reference library 
into the space of a new and previously unseen data-
set. A combination of rigid and affine transformations 
is computed, first, to generate a bounding box specific 
to each target ROI. Invicro MAS then efficiently refines 
the accuracy of the mapping within this bounding 
box by using deformable registration. The non-linear 
registration is performed using a high dimensional 
Symmetric Normalized (SyN) registration [4], or a fast-
symmetric demons deformable registration [5]. The 
optimal choice of algorithm depends on the biomedi-
cal application, its goal, and operational constraints, 
such as available computational resources, desired 
accuracy, and restrictions on time [3]. Future work 
will accelerate these procedures through the applica-
tion of deep learning.

2. 3   Label fusion
The final step of general MAS methodologies is the 

combination of mapped reference segmentations into 
a final region segmentation, associated with the test 
data set. In the Invicro implementation, once regis-
tration of all the reference images to the subject 
space is completed, the resulting spatial transform 
from a subset of the best-registered datasets, accord-
ing to a registration quality metric, are used to map 

the corresponding labels to the coordinates of the 
input image. The propagated labels are combined 
using a label fusion algorithm [6, 7]. The simplest 
fusion method is to average the propagated labels to 
form a probability map and to threshold this map at 
a fixed cutoff to generate the final ROI in the subject 
space. More sophisticated label fusion approaches 
are commonly used, particularly maximum likeli-
hood-based methods which will be implemented in 
the future [6, 7].

Fig. 1 illustrates the workflow by way of an example 
application in lung MRI.

Fig. 1  �Workflow for application of MAS tool in lung MRI. Images gener-
ated using VivoQuantTM.
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3   Applications

The MAS methods are used across a wide range of 
applications. Several case studies are presented below 
that describe how the specific Invicro MAS segmenta-
tion approach strengthens quantitative image esti-
mates in support of studies of neurodegeneration, 
radiation dosimetry, cardiac function, and musculo-
skeletal development.
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3. 1   Rhesus Teeth
A multi-resolution MAS-based pipeline was devel-

oped for tooth segmentation in CT images of rhesus 
monkeys. The four teeth that were segmented include 
the left incisor, the left canine, and two molars on the 
left side of the subject. Manually segmented ROIs for 
each of the four regions were created for twelve sub-
jects and used as the reference library. Secondary 
reference libraries were also created for each indi-
vidual tooth at a higher resolution but limited to a 
small region extracted around each tooth. An input 
image was evaluated with the MAS tool at low resolu-
tion (0.5 mm isotropic voxels) to detect the approxi-
mate locations of each of the teeth. The individual 
teeth were extracted from the original image at full 
resolution (0.1 mm isotropic voxels). The MAS tool 
was run again on each of the extracted teeth at full 
resolution to determine the final segmentation for 
each tooth. Fig. 2 shows an example pipeline for a sin-
gle tooth (incisor) from input image to segmentation. 

we present an example of the Invicro MAS tool which 
is implemented in Invicro’s VivoQuantTM software 
platform for fully automated hippocampus, ventricle 
and whole brain segmentation [8]. The performance 
of MAS on these data is evaluated against manual 
tracing and FreeSurfer (a standard software in the 
field of human brain mapping for automated volu-
metric of T1-weighted neuroimaging [9]).

Preprocessing steps include denoising, bias field 
correction, anterior commissure / posterior commissure 
alignment [10,11], and intensity normalization. Labeled 
MRIs (reference library) were affinely-registered to tar-
get images and a bounding box was generated around 
each ROI. Regions within the bounding box of the 
reference MRIs were warped to the target image 
using deformable registration. The warped labels cor-
responding to the best fourteen reference MRIs are 
fused to produce example output as shown in Fig. 3.

Output Segmentation Hi-Res Multi-Atlas Segmentation Extract Hi-Res Region

Input Image Low-Res Multi-Atlas Segmentation Detect Region Low-Res

Fig. 2  Pipeline of MAS-Based Rhesus Tooth segmentation.

Leave-one-out validation was implemented using 
each of the data sets in the reference library. The 
performance metrics calculated were the Dice coeffi-
cient, Jaccard index, accuracy and precision of the 
output region against the gold-standard hand seg-
mented ROI. The metrics were used to validate that 
the tool was performing correctly and to aid the opti-
mization of settings. Dice coefficient overlap between 
gold standard segmentation and tool segmentation 
was 0.94 ± 0.02 for the canine, 0.96 ± 0.01 for the 
incisor, 0.96 ± 0.01 for the first molar, and 0.95 ± 0.02 
for the second molar (Mean ± SD).

3. 2   Brain Volumetric
MRI-derived hippocampal and ventricular volumes 

are widely used as key biomarkers as well as to aid 
the quantitative analysis of amyloid/tau PET scans 
for normal aging and Alzheimer’s Disease (AD). Here Fig. 3  Example outputs from VivoQuantTM-MAS tool.
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Automated segmentation was compared with man-
ual segmentation for the hippocampus, which is the 
most challenging region in the data set. The Dice 
index between VivoQuantTM-MAS derived segmenta-
tion and manual tracings is 0.81 ± 0.05 and 0.82 ± 0.05 
for left and right hippocampus.

Normal aging and disease progression-related reduc-
tion in hippocampus and whole-brain volume in tan-
dem with increase in ventricle volume is observed. 
Using the VivoQuantTM-deployed MAS method, the 
AD group exhibited a greater atrophy of a) left hip-
pocampus relative to MCI, LMCI and Normal groups 
and b) right hippocampus relative to MCI and Normal 
groups. In contrast with another widely used segmen-
tation software, only the comparison of left hippo-
campus atrophy in AD and Normal groups reached 
statistical significance, suggesting that Invicro’s seg-
mentation strategy improved power in distinguishing 
atrophy rates between subjects from different disease 
populations (Fig. 4).

ultrasound mice images. This was done using Invicro’s 
VivoQuantTM MAS tool to automate the otherwise 
lengthy manual image analysis and reduce intra- and 
inter-operator variability.

Following the manual selection of a diastole and 
systole frame, the reference library images (contain-
ing 25 manually segmented subjects) were registered 
to the two selected frames respectively. The subjects 
were affinely-registered with normalized mutual 
information (NMI) as the objective function. Following 
registration, the labels of the five registrations with 
the highest NMI were mapped and averaged to create 
a probability map that was then thresholded to gen-
erate the final segmentation used for LV analysis. 

The MAS approach was tested and validated on 
three different data sets (1 control and 2 disease mouse 
models, see Fig. 5) for a total of 90 subjects (n = 30/
group). Dice coefficients from comparisons of semi-
automated and manual segmentations ranged from 
0.85–0.98 with an average of 0.93 ± 0.03. The approach 
reduced user analysis time by approximately half in 
comparison to manual segmentation.

Fig. 4  Atrophy rate: FreeSurfer v.s. VivoQuantTM-MAS.
Fig. 5  �Comparison between manual (red) and automatic (green) seg-

mentations of selected diastole and systole frames.

VivoQuantTM-MAS, a fully automated segmentation 
tool, achieved high overlap with the EADC-ADNI 
validation dataset and performed favorably relative 
to Freesurfer in sensitively quantifying regional brain 
volume changes. VivoQuantTM-MAS has been deployed 
in a CFR21-Part11 compliant manner to support clin-
ical trials.

3. 3   Ultrasound Echocardiography
Echocardiography is a widely used and clinically 

translatable imaging modality for the evaluation of 
myocardial structure and function in preclinical drug 
discovery and development. The objective of this 
study was to develop a robust analysis workflow for 
semi-automated segmentation of left ventricle (LV) 
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3. 4   Whole-Body Segmentation
The most widely used application of MAS tech-

niques is in regional brain segmentation of structural 
MRI data. In brain segmentation, the skull provides a 
natural boundary that aids in registration. Extension 
of these techniques to segmentation of organs outside 
of the brain introduces complexity, owing to the lack 
of rigidity of the body in the vicinity of these regions. 

To achieve success in this more complex task, a 
few criteria are required in algorithm development. 
The identification of the reference library is critical 
and population demographics must be considered to 
ensure that the variability among subjects is well rep-
resented. As a result, the required reference library is 
large and fast initial screening of best matched 
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Fig. 6  �Example whole organ segmentation of clinical CT data. Grayscale 
is the CT data. Red is lung, cyan is heart, yellow is liver, and green 
is kidneys.

reference library data sets is critical to processing in 
a reasonable amount of time. Additional preprocess-
ing steps are utilized to harmonize anatomical orien-
tation and field of view. Finally, a sophisticated opti-
mizer that is particularly robust to parameter settings 
is utilized to improve whole body image registration.

This methodology has been utilized for both whole 
body CT and MRI data. One of the primary applica-
tions for this whole-body segmentation approach has 
been in dosimetry studies in rats, non-human pri-
mates, and humans where radiation dosimetry esti-
mates require whole organ estimates of uptake. This 
step is often the most time consuming in the radia-
tion dosimetry analysis process. MAS enables auto-
mated segmentation of brain, liver, lungs, heart, and 
kidneys, requiring minimal manual intervention. See 
Fig. 6 for an example of an automated CT segmenta-
tion of heart, lung, liver, and kidneys.

4   Conclusions

Invicro’s MAS techniques are powerful and gen-
eral, enabling automated segmentation across mul-
tiple modalities, species, and therapeutic areas. By 
utilizing these tools in 2D & 3D datasets to segment  
a large array of anatomical structures, labels are auto-
matically and accurately generated for large sets of 
data, resulting in measurable time savings and 
decreased region variability. Features, such as those 
used in radiomics methods, may then be automati-
cally extracted from the regions, unlocking many 
machine learning options. Additionally, these labeled 
data can become valuable source data for deep learn-
ing techniques. Given the large amount of pre-exist-
ing data from many preclinical and clinical imaging 
trials as well as the continued growth of imaging, 
these techniques are of paramount importance to 
enable streamlined and accurate analysis workflows 
that do not rely on large amounts of human resource 
to achieve their goals.
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